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Large-scale replication studies like the Reproducibility Project: Psychol-
ogy (RP:P) provide invaluable systematic data on scientific replicability, but
most analyses and interpretations of the data fail to agree on the definition
of “replicability” and disentangle the inexorable consequences of known se-
lection bias from competing explanations. We discuss three concrete defini-
tions of replicability based on: (1) whether published findings about the signs
of effects are mostly correct, (2) how effective replication studies are in re-
producing whatever true effect size was present in the original experiment
and (3) whether true effect sizes tend to diminish in replication. We apply
techniques from multiple testing and postselection inference to develop new
methods that answer these questions while explicitly accounting for selection
bias. Our analyses suggest that the RP:P dataset is largely consistent with
publication bias due to selection of significant effects. The methods in this
paper make no distributional assumptions about the true effect sizes.

1. Introduction. Growing concerns about selection bias, p-hacking, and other question-
able research practices (QRPs) have raised urgent questions about the reliability of scientific
findings. While concerns about replicability cut across scientific disciplines, psychologists
have led large-scale efforts to assess the replicability of their own field. The largest and most
systematic of these efforts has been the Reproducibility Project: Psychology (RP:P),1 a ma-
jor collaboration by several hundred psychologists to replicate a representative sample of 100
studies published in 2008 in three top psychology journals, Psychological Science, Journal
of Personality and Social Psychology and Journal of Experimental Psychology: Learning,
Memory, and Cognition.2

While the RP:P dataset is an invaluable resource, scientists disagree on how to quantify or
measure replicability (Amrhein, Korner-Nievergelt and Roth (2017), Goodman, Fanelli and
Ioannidis (2016)). Open Science Collaboration (OSC; 2015) reported three main metrics: it
found that 64% (= 1 − 36%) of the replication studies did not find statistically significant
results in the same direction as the original studies, that 53% (= 1−47%) of 95% confidence
intervals for the replication studies do not contain the point estimates for their correspond-
ing original studies and that 83% of the effect size estimates declined from original studies
to replications. All three summary statistics were widely reported as indicating a dire cri-
sis for the credibility of experimental psychology research. For example, the Washington
Post reported that RP:P “affirms that the skepticism [of published results] was warranted”
(Achenbach (2015)); the Economist noted that OSC “managed to replicate satisfactorily the
results of only 39% of the studies investigated” (2016) and the New York Times reported that
“more than half of the findings did not hold up when retested” (Carey (2015)).
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1In some parts of the literature, “reproducibility” has taken on a computational connotation, meaning only that

other scientists can repeat the analysis using the original study’s data; we will lean toward the more unambiguous
term “replicability.”

2The test statistics, effect sizes and most pertinent information are all publicly available on at the Open Science
Foundation website at https://osf.io/ezcuj/.
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This negative gloss was challenged in a comment by Gilbert et al. (2016a), who criticized
both the fidelity of some of the replications’ experimental designs and the aptness of the met-
rics reported by Open Science Collaboration (2015). In particular, Gilbert et al. pointed out
that, because there is sampling error in the replication point estimates, we should not expect
95% of the estimates to fall into the replication confidence intervals even under ideal condi-
tions. Moreover, any small or large variations in the true effect sizes between the original and
replication studies could further deflate the expected fraction of “successful replications,” as
measured in this way. Gilbert et al. concluded that “OSC seriously underestimated the re-
producibility of psychological science,” sparking further debate between defenders of OSC’s
conclusions (Anderson et al. (2016), Nosek and Gilbert (2016), Srivastava (2016)) and the
critics (Gilbert et al. (2016b, 2016c)).3

1.1. Three definitions of replicability. To determine whether OSC truly underestimated
replicability, we must first pin down the rather slippery question of what “replicability” actu-
ally is. Although the three metrics used by OSC are simply descriptive statistics that do not
purport to estimate any explicitly defined underlying quantity, we can loosely characterize
the 64%, 53% and 83% numbers respectively as qualitative answers to three questions:

• False directional claims. What fraction of the original studies were erroneous in claiming
that the true effect was nonzero in the claimed direction (positive or negative)? Gelman
and Tuerlinckx (2000) called such mistakes type S errors.

• Effect shift. How much do the effect sizes shift from the original study to the replication
study? We call the discrepancy between the original and replication effect, effect shift.

• Effect decline. What fraction of the effect sizes decline? More precisely, what fraction of
the true effect sizes shift in a direction opposite to the original claims when the studies
were replicated and by how much?

The first question concerns a type of false discovery rate (FDR) of the statistical hypotheses,
viewing the field of social psychology as a collective enterprise in large-scale multiple testing:
it quantifies the fraction of findings that would be confirmed if the exact same studies could be
carried out again with much larger samples from the same populations. The second question
concerns a basic form of repeatability: whether scientists are typically successful in closely
replicating each others’ experimental conditions, so that the true effect being measured is sta-
ble across different experiments. The third question builds upon the second question: whether
true effect sizes tend systematically to attenuate in replications. An overall trend of declining
true effects could suggest various interpretations, including systematic biases in the original
experiments or failures by the replication teams to reproduce key experimental conditions
that produced the original effects.

As we will see, however, none of the three reported metrics can be taken at face value
as estimates of the answers to the corresponding questions, due to the confounding factor
of pervasive selection bias. By using techniques from multiple testing and postselection in-
ference, we will develop methods to rigorously address these questions without assuming a
model for the prior distribution of effect sizes. For the RP:P data we estimate the rate of false
directional claims at roughly 32% among studies with p < 0.05, which would be considered
unacceptably high in most multiple testing applications. By contrast, among studies with
p < 0.005, a lower threshold proposed by Benjamin et al. (2018), our estimate drops to 7%
with an upper confidence bound of 18%. We also compute confidence intervals for the effect

3While much of the ensuing discussion focused on the question of whether the confidence interval metric 53% is
too pessimistic, analogous criticisms apply to the “significant replications” metric of 64% as well: the replication
studies could be underpowered even when a true effect is present.
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shift in each individual study pair and find that, after adjusting for multiplicity, about 11%
of the intervals exclude zero, an idealized null hypothesis of perfect replication. For effect
decline, we find in aggregate that 35% of the true effects declined, and 22% declined by at
least 25%.

In addressing each question we define our estimands in terms of the true effects present
in the statistical populations actually sampled in each study. Because some studies may be
biased or lack external validity—for example, because of flaws in the study design, or because
survey participants are unrepresentative of the broader population of scientific interest—these
effect sizes may not reflect the latent scientific quantities the experiments purport to measure.
Uncovering such discrepancies is beyond the reach of data analysis alone, but we should keep
them in mind as we interpret the results.

1.2. The role of selection bias. The RP:P data shows unmistakable signs of selection for
statistically significant findings in the original experiments: 91 of the 100 results replicated
by OSC were statistically significant at the 0.05 level in the original study, and four of the
others had “marginally significant” p-values between 0.05 and 0.06. This is due partly to
publication bias (that the studies might not have been published, or the results discussed, if
the p-values had not been significant), but also partly to OSC’s method for choosing which
results to replicate. Each OSC replication team selected a “key result” from the last experi-
ment presented in the original paper, and, evidently, most teams chose a significant finding
as the key result (justifiably so, since positive results usually draw the most attention from
journal readers and the outside world). Figure 1 shows the empirical distribution of p-values
from the original and replication studies.

The resulting selection bias in the original studies leads to many well-known and pre-
dictable pathologies, such as systematically inflated effect size estimates, undercoverage of
(unadjusted) confidence intervals and misleading answers from unadjusted meta-analyses. In-
deed, most of the phenomena reported by OSC, including the three metrics discussed above,
could easily be produced by selection bias alone. This would be true even if there are few false
directional claims, all replications are exact and true effects do not decline, as illustrated in
the following simulation study:

FIG. 1. The empirical distribution of the original and replication p-values. Nearly all of the original p-values
(in red) are smaller than 0.05.
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FIG. 2. Stylized simulation for the expected fraction of replication studies, which are not statistically significant
in the same direction as the corresponding original studies.

EXAMPLE 1. Consider a stylized setting where all experiments (both original and repli-
cation) have an identical effect size θ , producing an unbiased Gaussian estimate with standard
error 1. Assume, however, that we observe only study pairs for which the original study is
significant at level 0.05.

Figure 2(a) shows the expected fraction of replication studies, which are not statistically
significant in the same direction as the corresponding original studies, as a function of effect
size θ , along with the true proportion of false directional claims, or type S errors. Even when
the true error rate is low, for example, at θ = 1 as shown in Figure 2(b), the proportion of
replications reporting the same directional findings as the original studies can remain low.

Likewise, we simulate the expected fraction of 95% replication confidence intervals that
fail to cover their original point estimates in Figure 3 and the expected fraction of effect sizes
that decline in Figure 4. In both cases we see that selection bias is more than sufficient to
produce the metrics in RP:P, even in our idealized simulation with exact replications and
relatively few type S errors.

Because selection bias could, in principle, provide a sufficient explanation for the metrics
reported in RP:P, those metrics do not, in and of themselves, provide any evidence of any
other problems. In particular, they shed no light on whether the FDR is actually high, or how
much the effect sizes shifted, or whether effect sizes tend to decline. Nor do they provide
evidence for any competing accounts of the replication crisis, such as QRPs like p-hacking,
high between-study variability in effect sizes or systematic biases in the original studies.
To discern anything about other explanations, we must adjust for the pervasive effects of
selection bias.

Another good reason to disentangle selection bias from other sources of error is that the
former is, in some sense, the most innocuous explanation for the phenomena observed by
OSC while the others present much deeper scientific issues. The technical issues of selec-
tion bias can be addressed either retrospectively by statistical adjustments (e.g., Andrews and
Kasy (2018), Duval and Tweedie (2000), Fithian, Sun and Taylor (2014), Hedges (1992),
Simonsohn, Nelson and Simmons (2014a)) or prospectively with more preregistration or
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FIG. 3. Stylized simulation for the expected fraction of 95% replication confidence intervals that fail to cover
their original point estimates.

larger sample sizes. By contrast, it would be deeply worrying if psychologists were sys-
tematically unable to repeat their colleagues’ experiments, or if most published claims about
effect sizes were directionally incorrect.

1.3. Formalizing replicability. We now introduce a simple formal model for replication
studies with selection bias. For study i = 1, . . . ,m, let θi,O and θi,R denote the true effect sizes
in the original and the replication studies, respectively. Abstracting away experimental design

FIG. 4. Stylized simulation for the expected fraction of effect sizes that decline.
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details, assume that each study pair produces two normally distributed effect size estimators
θ̂i,O and θ̂i,R . Assume additionally that, for the study pair to appear in our replication data,
θ̂i,O must be statistically significant at level α = 0.05;4 then for some significance threshold
c > 0, we have

(1) θ̂i,O ∼ N
(
θi,O, σ 2

i,O

)
1{|θ̂i,O |>c} and θ̂i,R ∼ N

(
θi,R, σ 2

i,R

)
,

with all estimates assumed to be independent of each other. The indicator 1{|θ̂i,O |>c} beside

the normal distribution in (1) means that the distribution of θ̂i,O has been truncated to the
event where |θ̂i,O | > c and renormalized so that it integrates to 1. For the moment we assume
that the variances σ 2

i,O and σ 2
i,R are known; in that case c = z0.05/2σi,O . We will relax this

assumption in Section 2.

False directional claims. To formalize false directional claims in terms of the parameters of
model (1), we note that a type S error occurs when a statistically significant finding gets the
sign of the parameter wrong,

H
S,O
i : sign(θi,O) �= sign(θ̂i,O) where sign(x) =

⎧⎪⎪⎨⎪⎪⎩
+1 x > 0,

−1 x < 0,

0 x = 0.

Note that |θ̂i,O | is always larger than c, so sign(θ̂i,O) ∈ {−1,+1}. Letting Si = sign(θ̂i,O), we
can rewrite the hypothesis as

H
S,O
i : Si · θi,O ≤ 0.

Here, H
S,O
i is fundamentally data dependent, as it is determined by Si . Nonetheless, it is a

meaningful hypothesis: when Si = +1, we want to test the null that θi,O ≤ 0; otherwise, we
want to test the null that θi,O ≥ 0. Our strategy is to condition on the value of Si , since the
null hypothesis is fixed again once we know Si . We defer the discussion of valid testing of
data-dependent hypotheses for now.

The question of false directional claims, then, boils down to asking how many H
S,O
i are

true: a multiple testing problem. Our estimand, the proportion of type S errors that occurred,
is V/R, where V is the number of type S errors and R is the number of “discoveries,” that
is, rejections. If we classify the hypotheses by whether H

S,O
i is true and whether the test for

H
S,O
i is significant, then V and R correspond to the cell counts in Table 1.
In the multiple testing literature, V/R is called the directional false discovery proportion

(directional FDP, or FDPdir), the type S error analog of false discovery proportion (FDP;
Benjamini and Hochberg (2000)). In addition to an estimate, we also provide an upper con-
fidence bound for the directional FDP in Section 2. Both the estimator and the confidence

TABLE 1
Classification of the hypotheses, in the style of Benjamini and

Hochberg (1995). Only R is observed and we wish to infer on V

Original p-value H
S,O
i is true H

S,O
i is false Total

Significant V ∗ R

Not significant ∗ ∗ ∗
Total ∗ ∗ ∗

4We relax this assumption in Section 2.
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bound are based on a “p-curve” analysis, that is, an analysis of the distribution of signifi-
cant p-values (Simonsohn, Nelson and Simmons (2014b)). We further modify these methods
to evaluate the proposal to lower the statistical significance threshold by Benjamin et al.
(2018).

Although θ̂i,R is irrelevant to testing H
S,O
i , it is informative for the closely related question

of whether θ̂i,O incorrectly predicts the direction of the effect in a replication study, that is,

H
S,R
i : Si · θi,R ≤ 0.

Note that Si is computed from the original study, so this hypothesis is a measure of external
validity as to the (claimed) directions of effects. If an experimental result has external validity,
then any directional claim about the true effect should apply not only to the original study but
also to direct replications thereof. We provide analogous methods for multiple testing of the
hypotheses H

S,R
i .

Effect shift. To assess the effect shift in a specific replication attempt, we can test the hy-
pothesis HE

i : θi,O = θi,R (an exact replication). As Anderson et al. (2016) noted, “There
is no such thing as exact replication;” nevertheless, exactness serves usefully as an ideal-
ized null hypothesis. By inverting a test for HE

i , we can obtain a predictive interval for θ̂i,R .
Furthermore, by inverting tests for a related hypothesis H

E,δ
i : θi,O − θi,R = δ, we obtain a

confidence interval for θi,O − θi,R , the effect shift in study i. Our methods explicitly take into
account the truncation of θ̂i,O .

Effect size decline. The null hypothesis for effect size decline is closely related to effect
shift and can be formalized as the null hypothesis where the true effect size has declined by
no more than a fraction ρ ∈ [0,1],

H
D,ρ
i : Si · θi,R ≥ Si · (1 − ρ)θi,O.

If Si = +1 and ρ = 0.25, for example, rejecting H
D,ρ
i amounts to an assertion that θi,R <

0.75θi,O , that is, the true effect declined by more than 25% or is negative.
In particular, if ρ = 0, then H

D,0
i is a one-sided version of HE

i , and when ρ = 1, H
D,1
i is

equivalent to H
S,R
i . We can subsequently ask how many of H

D,ρ
i are false, another multiple

testing problem. We provide two estimators (one overestimate and one underestimate) and
confidence interval for the proportion of false H

D,ρ
i .

To facilitate the rest of the paper, we recapitulate the notations above in Table 2.

TABLE 2
Summary of notations introduced

Symbol Meaning

θi,O , θi,R True effect sizes in the original and replication ith studies.
θ̂i,O , θ̂i,R Effect size estimates in the original and replication ith studies.
σi,O , σi,R Standard errors in the original and replication ith studies.
Si Sign of the original ith study.

H
S,O
i Hypothesis that a type S error has occurred in the original ith study.

H
S,R
i Hypothesis that the signs of the original estimate and the replication true effect do not match.

HE
i = H

E,0
i , H

E,δ
i Hypothesis that the true effect has shifted by δ from the original to the replication i-th study.

H
D,ρ
i Hypothesis that the true effect size has declined by no more than the fraction ρ.
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1.4. Data-dependent hypotheses and conditional inference. Our hypotheses above,
H

S,O
i , H

S,R
i and H

D,ρ
i , are all innately data dependent. While data-dependent hypothe-

ses may at first sound unusual, they are commonplace in practice, for example, when pilot
studies are performed to generate hypotheses that are tested later on with fresh data. There is
no inherent conceptual problem with testing these data-dependent hypotheses: intuitively, we
understand that the test remains valid because the type I error rate is controlled for whatever
hypothesis is selected, conditional on that hypothesis having been selected.

Conditional inference is well established in the statistical literature as a means of construct-
ing valid confidence intervals for parameters that were selected in a data-dependent way (e.g.,
Sampson and Sill (2005), Weinstein, Fithian and Benjamini (2013), Yekutieli (2012), Zöllner
and Pritchard (2007)). Fithian, Sun and Taylor (2014) generalized the intuition about pilot
studies to argue that a test of a data-dependent hypothesis is valid, so long as the type I error
rate is controlled conditioned on the portion of the data that generated the hypothesis. For our
hypotheses here, Si is the part of the data that determines the hypothesis: in effect, we can
imagine ourselves in the position of having observed the signs of all the original estimators
but knowing nothing else about the data. At that stage it is valid to formulate a hypothesis
that depends on Si and plan to test it using the still-unobserved data, namely, |θ̂i,O | and θ̂i,R .

After conditioning on Si , each hypothesis discussed above amounts to testing a fixed linear
hypotheses about (θi,R, θi,O), the natural parameter of the truncated bivariate normal model
(1); as a result, they are all amenable to postselection inference using the selective z-test built
on the work of Lee et al. (2016). Section 2 discusses the methodology in detail.

1.5. Related work. There has been much commentary on how to define replicability for
scientific experiments. Valentine et al. (2011) pointed out that the definition should depend on
the scientific context. For example, sometimes one may wish to test the robustness of conclu-
sions to subpopulation differences, but in other times to changes in experimental conditions.
Goodman, Fanelli and Ioannidis (2016) expanded on this and gave a few useful definitions
for what replicability is, such as methods reproducibility, results reproducibility, inferential
reproducibility, etc., but stopped short of an operational statistical criterion for replicability.
False directional claims and effect shift can be loosely interpreted as inferential and results
reproducibility, respectively.

Operationally, Valentine et al. (2011) and Nosek and Errington (2017) proposed the met-
rics used in RP:P and Camerer et al. (2018), a similar replication effort in experimental eco-
nomics. However, these metrics suffer the shortcomings discussed earlier, in that they do
not answer a concrete statistical question and cannot disentangle selection bias from other
explanations.

In this article our definitions of replicability are inspired primarily by the statistical liter-
ature on multiple testing and meta-analysis, such as the estimator in Storey (2002), the FDP
and directional FDP from Benjamini and Hochberg (2000), Benjamini and Yekutieli (2005),
and the partial conjunction testing framework of Benjamini and Heller (2008), Heller et al.
(2007). Related error rates have also been estimated before: Jager and Leek (2014) have mod-
eled the p-value distributions under alternatives and the selection for statistical significance to
estimate the FDR in the medical literature, accompanied by useful discussions from Gelman
and O’Rourke (2013), Goodman (2013), Ioannidis (2013); in addition, Camerer et al. (2018)
used Bayesian methods to estimate the false positive rate, instead of the FDR, for published
social science results in Nature and Science.

Furthermore, there are many past efforts to model and quantify selection bias, specifi-
cally using the RP:P dataset. For instance, Johnson et al. (2017) considered a publication
bias model where the probability of publication is a step function of the p-value which is
generalized nonparametrically in Andrews and Kasy (2018). The two analyses estimated that
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a statistically significant result was 200 (Johnson et al. (2017)) or 30 (Andrews and Kasy
(2018)) times as likely to be published as a statistically insignificant one.

Adjusting for selection, van Aert and van Assen (2017, 2018) have combined the evidences
from both the original and replication experiments to provide estimates for the effect sizes.
Specifically with a truncated Gaussian model, Etz and Vandekerckhove (2016) have also
analyzed the RP:P dataset from a Bayesian perspective and investigated the discrepancies
between the original and replication studies. Our analysis provides a complementary point
of view with frequentist hypothesis testing without any prior on the effect sizes, with the
help of recent advances in postselection inference, including, primarily, the selective z-test
framework of Lee et al. (2016).

1.6. Outline. Section 2 details the methodology and assumptions used in this analysis
and is somewhat technical. Section 3 applies the developed methodology to the RP:P dataset,
summarizes and interprets the results. Section 4 concludes.

2. Methodology. In this section we will construct an estimator for directional FDP, a
test for the effect shift in replication i and an estimator for the proportion of effect sizes that
declined. We also use X ≥st Y to denote that X is stochastically larger than Y . The index i is
suppressed when there is no risk of ambiguity.

Since we need a well-defined notion of direction to consider the proportion of false di-
rectional claims, we restrict our attention to univariate tests, namely, z-, t-, F(1, ·)-tests or
correlations. Thus, studies that are not univariate or have p-values greater than α0 = 0.05 are
discarded: our estimates and analyses below consider only the m = 68 remaining studies with
univariate structure and conventionally significant original p-values.

2.1. Selection bias model. Model (1) assumes that results are only published if they
achieved statistical significance at some conventional threshold level α0, which is 0.05 in
our data. While this assumption is not true in the case of RP:P since some original p-values
are above 0.05, we note that the model can be relaxed to the following milder assumption:

ASSUMPTION 1. pO < α0 is “significant enough:” a result with pO < α0 would be
equally likely to be published (or selected for replication), if the p-value were some other
statistically significant value.

Assumption 1 allows some significant p-values to go unpublished. If it holds, then we can
model the original test statistics as following their theoretical distribution, truncated to the
event where the corresponding p-values are below α0, as in Model 1.

Note that Assumption 1 contemplates a fairly straightforward mechanism for selection on
statistical significance which may not be adequate to describe the effects of more complex
and difficult-to-model QRPs. In particular, p-hacking—the iterative tweaking of an analysis
until the p-value drops below the researcher’s desired significance level α0—is commonly
suspected to produce a pileup of p-values just below the significance threshold (see, e.g.,
Simonsohn, Nelson and Simmons (2014b)). Because p-hacking is such a vaguely defined
practice, it is unclear how we might incorporate it into our model, but, in any case, there is no
evidence of a pileup just below 0.05 in the original RP:P studies (see Figure 6(a)). We will
reconsider the validity of Assumption 1 in Section 4.

2.2. False directional claims. We will adapt the method in Storey (2002) to estimate
the directional FDP while accounting for selection bias. Furthermore, if we believe the cho-
sen studies are representative of the publications in the journal or discipline (e.g., Stroebe
(2016)), then this estimator can also be regarded as an estimator for the journal-wide or
discipline-wide directional false discovery rate (FDRdir), the expectation of the directional
FDP (Benjamini and Yekutieli (2005)).
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Adjusting for selection bias. While dividing a postselection p-value by α0 intuitively adjusts
for selection, it is not immediately valid when the null is one-sided with a true effect not on
the boundary. We demonstrate below that this adjustment typically remains valid even in this
case.

Recall that a valid p-value is a random variable that is stochastically larger than
Uniform[0,1] (i.e., superuniform) under the null hypothesis. If we only observe the origi-
nal p-value when it is significant, it is not superuniform after selection under HS,O , and it
is therefore not valid for testing the hypothesis of a false directional claim. To adjust these
p-values for selection, we follow the principle in Fithian, Sun and Taylor (2014) by condi-
tioning on the event that the p-values are selected and, also, on the variable S = sign(θ̂O)

which determines the hypothesis HS,O that we test. We consider two cases: when the original
study is a one-sided test and when it is a two-sided test. As we will see, the adjustment in
either case is to divide by α0.

First, we consider the case where the original study was a one-sided test. Assume pO is
a p-value for a test of the hypothesis H0 : θO ≤ 0, in which case S = +1, deterministically
(the opposite case with H0 : θO ≥ 0, and S = −1, deterministically, is directly analogous).
Suppose pO is the original p-value, which we observe only when it is significant at the con-
ventional threshold, that is, when pO < α0. Under mild assumptions satisfied by both z-tests
and t-tests,5 pO ≥st Uniform[0, α0] under HS,O , in which case pO/α0 ≥st Uniform[0,1].

Next, we consider the case where pO is a p-value for a two-sided test of H0 : θO = 0
and where S = +1 (the case with S = −1 is analogous). If p+

O was the original one-sided
p-value for H0 : θO ≤ 0, then pO = 2p+

O when S = +1 (pO = 2 − 2p+
O if S = −1). In our

truncated model, under the same assumptions as above and conditional on S = +1, p+
O ≥st

Uniform[0, α0/2] and, therefore, pO/α0 = 2p+
O/α0 ≥st Uniform[0,1] under HS,O . We write

p′
O = pO/α0 for the adjusted p-value.

Inference on FDP: Estimate and upper confidence bound. Using the adjusted original p-
values, we can estimate the directional FDP in the original studies. Recall from Table 1 that

R = #{pi,O ≤ α0} = m,

V = #
{
pi,O ≤ α0 and H

S,O
i is true

}
.

Since all of the studies were deemed discoveries, R = m is the total number of studies here.
Table 3 classifies the m conventionally significant studies according to whether H

S,O
i is true

and whether the adjusted p-value is larger than some fixed value λ in (0,1), for example,
λ = 0.5.

Note that B = #{λα0 ≤ pi,O < α0} from Table 3 is observable, while V and U are not.
Under the one-sided null, the p-value is superuniform, and so

(2) B ≥st U ≥st Binomial(V ,1 − λ).

TABLE 3
Classification of the R = m significant original studies. Here, only R

and B are observed, and we wish to infer on V

Adjusted p-value H
S,O
i is true H

S,O
i is false Total

p′
i,O < λ ∗ ∗ ∗

p′
i,O ≥ λ U ∗ B

Total V ∗ R = m

5Namely, that the test statistic has monotone likelihood ratio in the parameter.
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As a result, E[B] ≥ (1 − λ)V and a conservative (upwardly biased) estimator of the direc-
tional FDP is

F̂DPdir = B

(1 − λ)R
.

This estimate is conservative, in the sense that it overestimates the type I error, and is equiv-
alent to the estimator π̂0 of the true null proportion in Storey (2002). Using λ = 0.5 and
α0 = 0.05, the estimate boils down to

F̂DPdir = 2

m
· #{0.025 ≤ pi,O < 0.05}.

While the above is formally an estimator for the number of directional errors, it can be
interpreted practically as an estimate of the fraction of directional claims where either the
direction is wrong or the effect has a negligible magnitude, cf. type M error from Gelman
and Carlin (2014). This is because p-values whose effect sizes are very close to zero are
nearly uniform and contribute to our estimator similarly as if the true effect were exactly
zero.

Additionally, we can exploit (2) to obtain an upper confidence bound for the directional
FDP, by testing the hypothesis H0 : V ≥ v0, a partial conjunction hypothesis investigated in
Heller et al. (2007). Here, we combine only the coarse information of whether each p-value
is greater than λ6 and reject for small values of B . We can compute the largest v0, such that
the test still accepts, which gives an upper confidence bound of V . Dividing this bound by R

gives an upper confidence bound for the directional FDP.

Directional FDP at smaller thresholds. One proposal to address the replicability crisis is to
lower the conventional significance threshold from α0 = 0.05 to some smaller value α, such
as 0.005 (Benjamin et al. (2018)). As suggested by Goodman (2013), an empirical method to
evaluate the hypothetical scenario with a smaller threshold can be helpful. We now discuss
methods for inference on the directional FDP for those studies with pO < α < α0, based on
comparing the number of adjusted p-values below α with the number above λα0, for some
λ > α/α0. We call this method the external comparison method, in contrast to the earlier
internal comparison method that bases on (2). This method will be less conservative, as we
are not constrained to only using the p-values in [0, α).

Let N ≤ m denote the total number of original p-values in [0, α) ∪ [λα0, α0) (or, equiva-
lently, the number of adjusted p-values in [0, α′) ∪ [λ,1) for α′ = α/α0). Table 4 classifies
these N studies according to whether H

S,O
i is true and whether the adjusted p-value is larger

than λ or smaller than α′. The numbers of false directional claims, and all directional claims
under the hypothetical threshold are Vα and Rα , respectively. Auxiliary counts, Tα and W ,
are defined according to Table 4 as well. The directional FDP, Vα/Rα , remains as our quantity
of interest.

Our method is inspired by the following stochastic inequality:

LEMMA 1. Conditional on N , Tα and W , we have

(3) B | N,Tα,W ≥st Binomial(N − Tα,β).

PROOF. All adjusted p-values are independent and are either small (p ≤ α′) or big
(p ≥ λ). The adjusted p-values corresponding to a true null are big with probability at least

6More precisely, we count number of p-values that are greater than λ and consider its distribution under the
partial conjunction null hypothesis
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TABLE 4
Classification of the N ≤ m original studies with adjusted p-values

in [0, α′] ∪ [λ,1]. Only Rα , B and N are observed. Auxiliary
unobserved quantities, N0, Tα and Rα , are defined accordingly. Our

goal is to infer on Vα

Adjusted p-value H
S,O
i is true H

S,O
i is false Total

Small (p′
i,O < α′) Vα Tα Rα

Big (p′
i,O ≥ λ) U W B

Total N0 ∗ N

β = 1−λ
1−λ+α′ . We proceed to condition on Tα and W , so they are now considered deterministic.

So the total number of big adjusted p-values, B , satisfies

B = U + W ≥st Binomial(N − N0, β) + W ≥st Binomial(N − Tα,β). �

With (3), we can estimate N − Tα , conservatively, with B/β . Since Vα = N − Tα − B , a
reasonable estimator for the directional FDP is

F̂DPdir = 1 − β

β
· B

Rα

.

Furthermore, (3) gives us a 95% upper confidence bound for the directional FDP,

FDP∗
dir = Q − B

Rα

where Q = max
{
q : P[

Binomial(q,β) ≥ B
] ≥ 0.95

}
.

PROPOSITION 2. The expectation of F̂DPdir is at least the expectation of the true direc-
tional FDP, and FDP∗

dir is greater than the true directional FDP, with probability at least
95%.

PROOF. For the estimator, we start by taking the expectation of F̂DPdir − FDPdir, condi-
tional on N , Tα and W ,

E[F̂DPdir − FDPdir | N,Tα,W ] = E

[ 1−β
β

B − Vα

Rα

∣∣∣ N,Tα,W

]

≥ E

[ 1−β
β

(N0 − Vα) − Vα

Vα + Tα

∣∣∣ N,Tα,W

]

= E

[
(1 − β)N0 − Vα

β(Vα + Tα)

∣∣∣ N,Tα,W

]

≥ (1 − β)N0 −E[Vα | N,Tα,W ]
β(E[Vα | N,Tα,W ] + Tα)

(4)

≥ 0,(5)

where (4) follows from applying Jensen’s inequality to the convex function f (x) =
(1−β)N0−x

β(x+Tα)
and (5) follows from Vα | N,Tα,W ≤st Binomial(N0,1 − β). Taking expecta-

tion on both sides completes the proof.
For FDP∗

dir, we can directly compute the probability that it is greater than FDPdir, condi-
tional on N , Tα and W ,

P
[
FDP∗

dir ≥ FDPdir | N,Tα,W
] = P

[
Q − B

Rα

≥ Vα

Rα

∣∣∣ N,Tα,W

]



STATISTICAL METHODS FOR REPLICABILITY ASSESSMENT 1075

= P[Q ≥ B + Vα | N,Tα,W ]
= P[Q ≥ N − Tα | N,Tα,W ]
≥ 0.95,

from the construction of Q. Hence, taking expectation on both sides yields the desired
marginal coverage. �

REMARK. This proof of conservativeness actually shows something stronger than
marginal guarantees: the estimator and confidence upper bound are both conservative condi-
tionally, even when we condition on the signs Si .

Methods using replication p-values. As mentioned in Section 1, we can use the replication
p-values in lieu of the adjusted original p-values above, providing an estimate and confidence
bound for the frequency of when the θ̂O incorrectly predicts the replication effect direction.
While this approach requires potentially costly replications in future applications, it provides
valuable additional information. In particular, the replication p-values are more likely to
be free of QRPs or p-hacking that may violate our assumption that adjusted p-values are
superuniform under the null, providing more robust evidence regarding replicability. The
corresponding estimator for unadjusted replication p-values with λ = 0.5 is

F̂DPdir = 2

m
· #{pi,R ≥ 0.5}.

2.3. Effect shift. We will derive a test for the hypothesis HE : θO = θR at level 0.05. Our
test is based on a normal distribution, so we start by demonstrating that the effect size esti-
mates of the univariate studies can be reasonably modeled by our truncated bivariate normal
distribution in model (1). We classify these studies into two categories and provide a rough
rationale in our definition of effect size in each category: (1) t-tests and F(1, ·) ANOVAs,
where all independent variables are categorical; and (2) correlations and regressions, where
one or more independent variables are continuous.

For a t-test or F(1, ·) ANOVA, we can define the effect size as the noncentrality parameter,
scaled for cell sizes. In other words, the t-statistic is distributed as T ∼ tdf(kθ), for some
real constant k chosen based on the study design. For example, k = √

n for a one-sample
t-test. When df is sufficiently large, the t-statistic is approximated well by a z-statistic and
distributed approximately as

T ∼ N(kθ,1).

For our analysis we consider studies where the original and replication degrees of freedom
are at least 30.7

For a (partial) correlation coefficient estimate, R, we can apply Fisher transformation
(1921, 1924) to convert it into a z-statistic, which approximately follows√

n − 3 − p tanh−1(R) ∼ N(
√

n − 3 − pθ,1),

where p is the number of controlled covariates and θ is a quantity that can be taken as the
effect size.

In either case, the test statistic in 46 studies can be transformed to an approximate z-
score Z ∼ N(kθ,1) for some real constant k. Additional considerations in certain studies are
detailed in the Supplementary Material (Hung and Fithian (2020)).

7The choice of 30 complies with the analysis in Andrews and Kasy (2018). Further discussion on the approxi-
mation is available in the Supplementary Material (Hung and Fithian (2020)).
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Adjusting for selection bias. We turn next to address the issue of postselection inference.
Again, we condition on the event where the z-scores are observed, but we do not need to con-
dition on S, as the hypothesis HE is no longer random. Since the statistic is only observed if it
is statistically significant, the original and replication z-statistics follow a truncated bivariate
normal joint distribution: [

ZO

ZR

]
∼ N

([
kOθO

kRθR

]
,

[
1 0
0 1

])
1{ZO∈A}.

Here, A is the selection event which contains the statistically significant values of ZO . We are
interested in testing HE : θO = θR and, more generally, the null hypothesis HE,δ : θO − θR =
δ which can be inverted to yield a confidence interval.

We cast this as a more general testing problem here to benefit later derivations on effect
decline. Suppose we have a truncated bivariate distribution

Z =
[
Z1
Z2

]
∼ N

(
μ,

[
1 0
0 1

])
1{Z1∈A} where μ =

[
μ1
μ2

]
and we want to test η′μ = δ for some constant vector η = (η1, η2) with η1 > 0. Test for HE

and HE,δ are special cases where η = (1/kO,−1/kR).
We can perform this general testing problem with the selective z-test, based on the frame-

work in Lee et al. (2016).

DEFINITION 1 (Selective z-test). Let η⊥ = (η2,−η1), D = η′Z and M = η′⊥Z. We now
consider M as a constant and test η′μ = δ using the test statistic D against the null distribution

N
(
δ,‖η‖2)

1{D∈‖η‖2A−η2M

η1
}.

Specifically, we reject η′μ = δ when D is below the 0.05
2 -quantile or over the (1 − 0.05

2 )-
quantile of this null distribution.

We proceed to show that this is a valid test by construction.

PROPOSITION 3. The selective z-test defined in Definition 1 has level 0.05.

PROOF. Leveraging the fact that η′η⊥ = 0, we reparametrize the joint distribution of
(Z1,Z2) under the null such that δ is a parameter, that is,[

D

M

]
=

[
η′Z
η′⊥Z

]
∼ N

([
δ

η′⊥μ

]
,

[
‖η‖2 0

0 ‖η‖2

])
1{Z1∈A}.

In particular, the event Z1 ∈ A can be rewritten as

D ∈ ‖η‖2A − η2M

η1
.

And so the distribution of D conditional on M under Hδ
0 is a truncated Gaussian distribution,

[D | M] ∼ N
(
δ,‖η‖2)

1{D∈‖η‖2A−η2M

η1
},

and we obtain a valid test by rejecting when D is smaller than the 0.05
2 -quantile or larger than

the (1 − 0.05
2 )-quantile. �

The construction above is represented graphically in Figure 5 and in the style of Lee et al.
(2016). We can represent the observation (Z1,Z2) as a point in R

2. Conditioning on M is
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FIG. 5. Graphical representation of the selective z-test. The observation (Z1,Z2) is a point, and the truncation
on Z1 means that the shaded area is the support of the joint distribution (Z1,Z2). Conditioning on M is the same
as conditioning on M/‖η⊥‖, so we now consider the conditional distribution on the truncated line �. The test
statistic D indicates the position on �. Under the null HE,δ : θ1 − θ2 = δ, the conditional distribution on � is
known, and a valid p-value can be obtained, yielding the selective z-test.

equivalent to conditioning on M/‖η⊥‖, which means we are now considering the conditional
distribution on the truncated line �. The test statistic D, or equivalently D/‖η‖, indicates the
position on �. Under the null that η′μ = δ, the conditional distribution on � is known, and a
valid p-value can be obtained, yielding the selective z-test.

REMARK. It is not necessary to use 0.05
2 - and (1− 0.05

2 )-quantiles of the null distribution,
as long as the desired significance level is achieved under the null distribution. For example,
a uniformly most powerful unbiased test can be used in lieu of a test with equal tail cutoffs.
Furthermore, if we are interested in a one-sided hypothesis, for example, η′μ ≤ 0, we can
reject on one tail only. This will be particularly useful for derivations about effect decline
later.

Interval estimation. Given a valid test φ(ZO,ZR) for testing HE,δ : θO − θR = δ, we can
obtain two intervals: a predictive interval for the replication effect size estimate and a confi-
dence interval for effect shifts.

Under the null hypothesis HE : θO = θR , P[φ(ZO,ZR) rejects] = 0.05, or, equivalently,

P
[{

zR : φ(ZO, zR) accepts
} 
 ZR

] = 0.95.

Hence, {zR : φ(ZO, zR) accepts} is a predictive interval for ZR which translates to a predic-
tive interval for the point estimate θ̂R of the replication effect size.

By the duality of hypothesis testing and confidence set, the set{
δ : HE,δ is rejected

}
covers the difference of the original and replication effect sizes with probability 95%.

2.4. Effect decline. We will estimate the proportion of effect sizes that declined by at
least a fraction of ρ. Our procedure consists of two parts: (1) for each study i, test and
produce a p-value for the hypothesis H

D,ρ
i and (2) adapt the method for the directional FDP

to estimate the proportion of H
D,ρ
i that are false.
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Adjusting for selection bias. As with the exactness test, we condition not only on the event
where the z-scores are observed but also on S = sign(θ̂O), as our hypothesis HD,ρ is deter-
mined by this random variable. In other words, we consider the z-statistic ZO to be drawn
from the set A+, where A is the selection event from our test for effect shift and

A+ = A ∩R+ = {zO : zO is statistically significant} ∩R+.

Putting ZO and ZR together, they follow a truncated bivariate normal joint distribution:[
ZO

ZR

]
∼ N

([
kOθO

kRθR

]
,

[
1 0
0 1

])
1{ZO∈A+}.

By convention RP:P chose θ̂O > 0 so the hypothesis HD,ρ reduces to θi,R ≥ (1 − ρ)θi,O ,
or, equivalently, θi,R − (1 − ρ)θi,O ≥ 0. This can be tested using the selective z-test with
η = (1/kO,−1/(1 − ρ)kR) and rejecting on one tail only.

Inference on effect decline: Estimates and confidence bounds. With the resulting p-values,
our earlier methods on directional FDP can provide an overestimate and an upper confidence
bound for the proportion of true HD,ρ . Subtracting these from 1 yields an underestimate and
a lower confidence bound for the proportion of false HD,ρ . On the other hand, by considering
the complement of the hypothesis HD,ρ , we can also provide an overestimate and an upper
confidence bound for the proportion of false HD,ρ . These estimators and bounds together
provide an overestimate, an underestimate and a 90% confidence interval for the proportion
of effect sizes that at least declined by a fraction of ρ.

3. Reanalysis of RP:P.

3.1. False directional claims. We implemented our method with λ = 0.5 to estimate the
number of one-sided nulls and the directional FDP.8 The adjusted original p-values and repli-
cation p-values are given in Figure 6(a) and 6(b), respectively. Using the original p-values,
we estimate that 22 of the 68 (32%) original directional claims are false with a 95% up-
per confidence bound of 47%. Using the replication p-values, we estimate that 32 of the 68
(47%) original directional claims incorrectly predict the direction of the replication effect
with a 95% upper confidence bound of 63%. In particular, both of our FDP estimates are
much lower than the 64% which could be suggested by a naive reading of RP:P (e.g., Baker
(2015)). These numbers are summarized again in Table 5 later. Furthermore, while we can
compute a lower confidence bound, it will always be 0% as the data is obviously consistent
with many null hypotheses being slightly false.

We proceeded to evaluate the proposal to reduce the statistical significance threshold
(Benjamin et al. (2018)). We considered three candidates for the new threshold, 0.001, 0.005
and 0.01, using the external comparison method. The directional FDP estimates and upper
confidence bounds are given in Table 5.

These estimates corroborate the suggestion by Benjamin et al. (2018) that reducing the
statistical significance threshold may improve replicability, at least regarding the directional
FDP of the original statistical hypotheses (of course, there is no way to account for potential
change in researcher’s behavior in response to the lowered threshold). Shall this be of interest,
this method provides an empirical way to determine a better significance threshold, as no
replications are needed. Nonetheless, potential effect heterogeneity is often a bigger concern.
In this case we are more concerned about the directional FDP for replications which remains
unacceptably high and requires replication experiments. Note, however, that a replication
with low power could contribute to our estimates, even if there were no type S error.

8Choosing λ = 0.5 follows the convention in the multiple testing literature for a bias-variance trade off: if λ is
too small, many true discoveries are counted as false; if λ is too big, the estimator can have large variance.
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FIG. 6. Method from Storey (2002) as demonstrated using histograms of p-values. We estimate the number of
true nulls by conservatively assuming that every hypothesis right of the vertical red line to be true. Since the
p-value under the null is superuniform, on average there are fewer null hypotheses left of the line than right of
the line. Our overestimate of the number of true nulls in each bin is shown by the horizontal red line. A net excess
of p-values above this line means false directional claims.

3.2. Effect shift. We performed the selective z-test for the hypothesis HE : θO = θR

while adjusting for selection, where seven (15%) studies are rejected. In contrast, without
adjusting for selection, 18 (39%) studies are rejected at 0.05 significance. If we wish to
correct for multiplicity, we can apply Benjamini–Hochberg procedure (1995) which rules
five (11%) replication studies as inconsistent with the original studies at false discovery rate
0.10.9 Applying the more stringent Holm’s method (1979) to control the familywise error
rate rules only the replication of Farris et al. (2008) as inconsistent at familywise error rate
0.05.

We inverted the test for the hypothesis HE to yield a predictive interval for ZR and,
hence, a predictive interval for the replication effect size estimate θ̂R , shown in Figure 7.

TABLE 5
The directional FDP estimates and 95% upper confidence bounds using the adjusted original and replication
p-values. The statistical significance level is α. The external comparison method was used for computing the
directional FDP estimates and the upper confidence bounds marked with daggers(†) above, as information of
p-values between α and 0.05 can improve the precision. The estimates and upper confidence bounds in the
“Replication” column are relatively noisy, due to the small number of p-values below the stricter rejection

thresholds, and give little basis for any conclusions

Adjusted original Replication

α Est. U.C.B. Est. U.C.B.

0.001 0.4/22 = 2%† 2/22 = 9%† 6/22 = 27% 12/22 = 55%
0.005 2.2/33 = 7%† 6/33 = 18%† 12/33 = 36% 20/33 = 61%
0.01 4.4/41 = 11%† 9/41 = 22%† 16/41 = 39% 25/41 = 61%
0.05 22/68 = 32% 32/68 = 47% 32/68 = 47% 43/68 = 63%

9The five rejected studies are Dodson, Darragh and Williams (2008), Farris et al. (2008), Larsen and McKibban
(2008), Purdie-Vaughns et al. (2008), van Dijk et al. (2008).
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FIG. 7. Predictive intervals for θ̂R , both adjusted and unadjusted for selection, overlay with a plot of θ̂R against
θ̂O . Studies 36 and 145 are not shown here. By definition, we reject H0 : θO = θR whenever the replication effect
size estimate lies outside of the predictive interval. The intervals are generally longer after adjusting for selection.

By definition, HE is rejected when θ̂R is not included in the predictive interval. Ad-
justing for selection generally stretches the predictive intervals, resulting in fewer rejec-
tions.

We also inverted the test for HE,δ and obtained a confidence interval for the effect shifts,
θO − θR , given in Figure 8. By construction, the null hypothesis HE : θO = θR is rejected
when the confidence interval does not include 0. Adjusting for selection also generally length-
ens the confidence intervals, resulting in fewer rejections.

If all procedures are replicated perfectly, we should expect to reject 5% of the tests on
average, rather than the observed 15%, and, after the Benjamini–Hochberg correction, there
would be no rejection with 90% probability. In other words, while selection bias can partly
explain the discrepancies between the original and replication studies, it does not explain
all of it. Nevertheless, the RP:P data cannot be taken as strong evidence of widespread
failure by replication teams to satisfactorily repeat the same experiment performed in the
original study. The lack of strong evidence is hardly surprising: if the original study lacks
power (Morey and Lakens (2017)) or θ̂O is closed to the rejection boundary, little can be
said about θO and, hence, θO − θR . Furthermore, the replication sample sizes were deter-
mined based on the original effect size to achieve at least 80% in power. Selection bias
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FIG. 8. Confidence intervals for θO − θR , both adjusted and unadjusted for selection. By construction, the
null hypothesis H0 : θO = θR is rejected when the confidence interval does not include 0. Many of the adjusted
intervals are fairly long, as either the replication studies suffer low power or the original effect size estimate is
near the rejection threshold. The intervals are generally longer after adjusting for selection.

inflated the original effect size, leading to lower test power and statistically insignificant
replications (Camerer et al. (2018), Etz and Vandekerckhove (2016)). The lack of informa-
tion about θO − θR is evident in generally wider confidence intervals after adjustment in
Figure 8.

3.3. Effect decline. Finally, we considered the proportion of effect sizes that declined.
Using the selective z-test, we tested the hypothesis HD , conditioning on the event where
the z-scores are observed and the variable S. The resulting p-values are given in Figure 9.
Our underestimate and overestimate are 35% (= 16/46) and 100%, respectively, with a 90%
confidence interval of (11%,100%).

More generally, we used the hypothesis HD,ρ to estimate the proportion of effect sizes that
declined by at least a fraction of ρ. The underestimate, overestimate and the 90% confidence
interval are given in Figure 10. For example, we estimate that 10 of the 46 effect sizes (22%)
decreased by at least 25%, even after adjusting for selection on measurement noise. Note that
this does not exclude explanations by other forms of selection, for example, selecting a large
effect when there is a random effect.
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FIG. 9. Histogram of the p-values for the null hypothesis θR ≥ θO . p-values to the left give more evidence for
θR < θO , whereas p-values to the right give more evidence for θR ≥ θO . The estimate of the expected number of
null p-values within each bin is given by the horizontal red line.

4. Discussion.

4.1. Importance of adjusting for selection bias. As we have seen, selection bias plays a
powerful and pervasive role in shaping the data we observe in large-scale replication studies
(and, by extension, the data we observe in published studies that have not yet been repli-
cated!). It leads to many predictable pathologies and should be viewed as a proverbial “ele-
phant in the room” whenever we discuss descriptive statistics computed from such studies.
In particular, we should avoid leaping to any conclusions about how many false claims there
were in the original studies, whether effect sizes declined, or by how much, or which repli-
cation studies suffered from infidelities, until we have carefully ruled out the possibility that
publication bias alone is to blame for whatever descriptive statistic we have computed.

FIG. 10. The underestimate, overestimate and the 90% confidence interval. The lower black line is the underes-
timate, the high black line is the overestimate and the gray band is the 90% confidence interval.
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Fortunately, the truncated Gaussian model, properly combined with modern multiple test-
ing and postselection inference methods, opens many avenues for analyses that directly an-
swer questions about true effect sizes with appropriate uncertainty quantification. We have
explored several such avenues here (see, also, Andrews and Kasy (2018)), but many others
are possible.

4.2. Importance of statistical formality. In addition, we hope this article serves to advo-
cate for the benefits of careful formal statistical modeling in analyzing replication studies, in
place of (or in addition to) descriptive statistics. In particular, using vaguely specified models
or eschewing models altogether can lead to analyses from which it is difficult to draw firm
conclusions. For example, in Open Science Collaboration (2015), McNemar’s test was ap-
plied to a 2 × 2 contingency table of whether the original and replication studies are equally
likely to be statistically significant. The very small p-value reported for this test establishes
nothing more than that the original studies were selected to be statistically significant, a fact
which is likely already known by most in the field. In fact, the test does not quite estab-
lish even that, because it is unclear whether this hypothesis would be true even without the
effect of selection bias: The proportion of statistically significant p-values is a measure of
the average power, which depends on the sample sizes, and the sample sizes often differed
substantially between the original and replication studies.

Another example is RP:P’s use of sample correlation coefficients between independent
and dependent variables as a standardized measure of effect size for comparison between the
original and replication studies. This comparison implicitly assumes that the distribution of
the independent variable is the same in the original and replication studies, an assumption that
was violated by many of the replications. In an extreme case, an ANOVA in Purdie-Vaughns
et al. (2008) with race as one of the factors used 40 African Americans and 37 Whites but
was replicated with 120 African Americans and 1370 Whites. With such a dramatic change in
the distribution of an independent variable, there is no reason why the correlation coefficients
should remain the same, as illustrated in the following example:

EXAMPLE 2. A study with a two-sample t-test for some treatment condition is repli-
cated. Suppose the treatment and control group are drawn from N(1,1) and N(0,1), respec-
tively. If the ratio of the two group sizes changes from one study to another, the correlation
coefficients may differ as well, even without any infidelities or hidden moderators. Borrowing
the numbers from Purdie-Vaughns et al. (2008), for instance, if the original study contains 40
treatment and 37 control units, the true correlation coefficient is 0.45, whereas in a replication
with 120 control and 1370 treatment units the true coefficient is 0.26 instead.

Replication projects similar to RP:P have since materialized, but few stated an explicit
statistical hypothesis. For example, in economics Camerer et al. (2016) used the same flawed
metric of proportion of statistically significant results in the original direction. A statistical
analysis with explicitly stated models and hypotheses will give us more meaningful estimates,
particularly valuable given how costly these large scale replication efforts are.

4.3. Interpretation of effect shifts. While we have proposed several methods for quanti-
fying discrepancies between the effect sizes in the original and replication studies, the data
alone cannot tell us why they might differ. Several potential explanations include:

1. Design failures, systematic biases or calculation errors in either the original or the repli-
cation study;

2. Major differences in experimental conditions between the original and replication stud-
ies, which most researchers would recognize a priori as likely to affect the results, which
Gilbert et al. (2016a) call infidelities; and
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3. Minor differences in experimental conditions between the studies—such as lighting,
weather or the passage of time—which cannot all be controlled but whose effects may never-
theless alter the true effect size in unforeseeable ways, often referred to as hidden moderators
(e.g., Srivastava (2015)).

While there may be no sharp distinction in principle between infidelities and hidden mod-
erators, there is a scientifically crucial difference between moderating factors that can be
anticipated by experimenters and those that cannot. If we can anticipate in advance when
replications are likely to fail by carefully evaluating their designs, we might hope to solve
the problem simply by being more careful in setting up experiments. By contrast, if hidden
moderators confound most attempts to replicate most psychological studies, it would raise
profound questions about the entire enterprise of experimental psychology. In the extreme
case if even trivial changes to those conditions have large and unpredictable effects on most
phenomena of interest, we might begin to despair of gaining generalizable knowledge about
psychology through laboratory experimentation.

Our analyses point to several conclusions regarding effect shifts: First, that there are a few
studies where we can be confident the effect in the replication study was significantly different
than in the original study; second, that in aggregate, when effects do shift, they tend to decline
(shift toward zero) in replications rather than increase; and third, that there is insufficient
evidence to conclude that the vast majority of experimental effects simply evaporated upon
replication. In particular, 83% should not be treated as a reasonable estimator of the fraction
of true effect sizes that declined; rather, it likely reflects that the estimates in the original
studies overestimated their corresponding true effects due to selection bias.

One possible explanation for systematically declining effect involves a subtler form of
selection bias, where every experiment’s effect size is random, buffeted by hidden moderators
and those experiments whose moderators primarily magnify the effect size are more likely
to be published. That is, in the same way that experimenters select studies whose sampling
error is large, they also select for studies whose true effect size is larger than usual. Further
systematic replication studies may help to shed light on which factors are most often the
culprits in moderating true effect sizes, possibly improving the reliability of experiments and
leading to new scientific insights (Barrett (2015), Klein et al. (2018)).

4.4. Future work. As large-scale replicability studies are becoming more common in
assessing the “well-being” of a scientific domain, this paper serves as a stepping stone for
improving methodologies in future replicability studies.

First, selection for significance is an inevitable consequence of the current scientific pro-
cess. Our adjustments for selection allows not only better analysis but also more informed
design of future replication studies, for example, better power calculations for and sizing of
replications. While these adjustments are admittedly crude, they are necessitated by the limi-
tations in the given data. With more available information a better model for selection can be
used. For example, with the advancement of preregistration we can use the external compari-
son method to produce less conservative estimates of the directional FDP at level α = 0.05 if
we have more information about statistically nonsignificant studies. With more replications
carried out, we can estimate the publication bias model in Andrews and Kasy (2018) more
precisely, which allows different propensity for publication for different statistical significant
p-values as opposed to Assumption 1. Together with higher powered design in replications
(e.g., Camerer et al. (2018)), we can enhance the precision of our estimators and power of
our tests.

Second, we emphasized the importance of statistical formality. Our proposed criteria are
based on clearly defined parameters. While these criteria may not suit all needs in future
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replicability studies, additional formal hypotheses can also be analyzed under the postselec-
tion inference framework similarly.

With our proposed criteria and procedures, researchers can perform more informative in-
ferences than the current practice and provide a clearer picture of the replicability crisis.

Reproducibility. The code generating the images in this article is available in the Sup-
plementary Material (Hung and Fithian (2020)).
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SUPPLEMENTARY MATERIAL

Supplement A: Supplement to “Statistical methods for replicability assessment”
(DOI: 10.1214/20-AOAS1336SUPPA; .pdf). We detail considerations made for individual
studies, as well as evaluate our approximation of t-distributions by normal distributions.

Supplement B: Code for “Statistical methods for replicability assessment” (DOI:
10.1214/20-AOAS1336SUPPB; .zip). We generated the figures, performed the analyses on
the RP:P dataset and ran relevant simulations in R.
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